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Abstract— On the basis of the mathematical model, called in 

a previous paper in total fluxes, and which is proper for the 

analysis of transient operation of the two-phase induction 

machine, one obtains the symmetrical steady-state equations, 

which are valid for three-phase machines, as well. The obtained 

mathematical expressions are much more simple and easier to 

be used that the consecrated ones which are generally applied 

in scientific literature. Moreover, considerations are to be 

made upon the space-time rotational vectors, emphasizing their 

importance in understanding the physical phenomena that 

characterize induction machines. The use of these space vectors 

is further tested out for the study of unsymmetrical supply 

which gives a much faster method in obtaining the 

electromagnetic torque expression. Finally, the results are 

compared with the ones that come out from the traditional 

methods. 

 
Index Terms—induction machine, unsymmetrical condition, 

representative rotational phase vector 

I. INTRODUCTION 

In support of our approach, defining of the space-time 
rotational vectors, which were presented under similar 
formulations in scientific literature [1-8], is firstly necessary. 
The superposing effect as regards the quantities of the 
electric field determined by the two-phase supply system 
and the corresponding magnetic field is also considered as a 
prior probability. The supply voltages are applied along the 
turns placed in the slots (collinear to Oz axis). If the winding 
is placed in the slots according to a sinusoidal law, one 

decide that the applied voltage phase vector, u  to be 

represented as a segment in the xOy space, orientated 
towards positive axis of the winding. The length of this 
segment is maximum when the applied voltage is maximum, 
too. Ideally, in default of magnetic leakages and drop 
voltages corresponding to winding resistance, the magnetic 
fields (more precisely, the total fluxes ψ which are 
preponderantly effective for the real cylindrical machines) 
close in a radial pattern inside the xOy space. It has a 
harmonic distribution on the periphery (on the circle that 
matches the middle of the air-gap) which means that the flux 

density has maximum values in the centrum of the supplied 
winding only when the applied voltage reaches the 0 value 
(according to induced voltage law: u=dψ/dt). For our 
demonstration, the stator phase vectors of the voltages and 
total fluxes will be represented in the xOy space for different 
but consecutive moments according to Leblanc theorem 
(any magnetic flux of ψm amplitude, which is created by a 
winding with cosine distribution and single-phase feeding, is 
equivalent with two rotating and equal fluxes with the 
amplitude of (1/2)ψm but which rotates in opposite directions 
with coequal speed – forward and backward traveling waves 
respectively), [9-14]. 

II. THE REPRESENTATIVE PHASE VECTORS OF THE 

IDEAL INDUCTION MACHINE 

The case of ideal machine with no leakage fluxes zero 

value winding resistances is taken into discussion. The 
following symbolic notations are used: 
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If one consider a cross section of a symmetrical two-phase 
machine (and more precisely a path along mid-stator 
cylinder) and the winding axes have the orientation as-Ox 
and bs-Oy respectively, then the phase vectors of the 

voltages and total fluxes, for different moments, have the 
positions indicated in Fig. 1 (where a two-phase 
symmetrical condition is assumed, bsas UU = ). 

 
Fig. 1 presents the voltage and total flux phase vectors 

corresponding to forward and backward order for three 
different moments: 0=tω - Fig. 1a1)-a3), 4/πω =t - Fig. 
1b1)-b3) and 2/πω =t - Fig. 1c1)-c3). In contrast with 
"classical" representation manner, where the cross and dot 
signs placed inside a turn show the orientation of the 
flowing current, in our case the symbols define the polarity 
of applied voltage across turns (to avoid any confusion has 
to be mentioned that the purely inductive circuits have a 
time alteration of phase of 2/π between current and applied 
voltage). 

During the considered interval (a quarter period) the 
applied voltage on as phase starts from maximum value and 
decreases to zero value (see Fig.1-a1,b1,c1) while the 
voltage corresponding to bs phase starts from zero value and 
increases to maximum value (Fig.1-a2,b2,c2). The resultant 
values of voltage and total flux phase vectors come from a 
geometrical summation of the forward components 
corresponding to the two phases of the machine. These 
components are coequal and collinear. On the contrary, the 
backward components are coequal but in opposite directions 

for every moment and consequently the sum is always zero. 
For example, the resultant phase vector of total stator flux 
has a constant absolute value and the rotation angle is of  

2/π  rad. (during a quarter period, the apex of the resultant 
phase vector covers a quarter of the circle inside the plane 
xOy). This is a coincidence that allows a reciprocal 
conversion of the temporal and spacial angles and the phase 
vectors (obtained by means of analytical representation) 
from the complex space (+1,+j) can be assimilated to phase 
vectors in xOy space, which will be denoted representative 

vectors. 
To express in an analytical manner the representative 

vector of total stator fluxes is necessary a geometrical 
summation of the components corresponding to Ox axis (the 

i versor) and Oy axis (the j  versor) of the two windings, as 

and bs. Along Ox axis, the total flux is created by as 
winding with a cosinusoidal time variation and an initial 
phase of 2/π− . The same assumption for bs phase but 
acting on Oy axis with an initial phase of π− . 

;
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This vector can be expressed in a different way (polar 

coordinates) as θ∠Ψ=Ψ sRsR . The absolute value of this 

vector is 222
asbsyasxsR Ψ=+=Ψ ψψ -constant, and the 

argument 2/πωθ −= ts , which is time dependent. The 

angular speed comes from phase derivative 

ss dtd ωθ ==Ω / and is equal to applied voltage pulsation. 

Notable is the fact that the projections of the representative 

vector along Ox and Oy axes have coequal length with 

instantaneous values of the total fluxes created by the as and 

Fig. 1  Representative rotational phase vectors of two-phase induction machine  
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bs windings. This is a strong motive in adopting the concept 
of representative space-time vector of the stator flux. It must 
be also mentioned that the representative vector of the stator 
flux shows any moment the radial direction of the cross 
section plane where the density of stator magnetic flux lines 
(with radial air-gap flux density) is maximum. 

A different way to define the representative space-time 
vector of the stator flux is based on one-to-one 

correspondence between xOy space ( i , j  versors) and 

complex space (+1,+j). The following statement is allowed: 

the j  versor can be obtained by rotating in the same plane 

the versor i with 2/π which is equivalent to "multiplication 
by j" in "simplified complex" approach. One can define: 

2/; πδψψ δ =Ψ+Ψ=Ψ↔+=Ψ bs
j

assRbsyasxsR eji   (6) 

The angle 2/πδ = has the signification of a spacial angle 

between the machine windings. Taking into consideration 
the forward and backward components presented above, one 
obtain: 
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which prove in an analytical way that there is a summation 
of the forward components and a subtraction of backward 
components which nullify them.  

Observation: The direction of rotation of the 
representative vector can be reversed if the polarity of the 

supply voltage for one winding is reversed as well. For 
example, if the reversed phase is b-y, then Ψbs is reversed 
and the representative vector becomes: 
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In this case, the forward components annihilate each other 
and the backward components add up. 

In conclusion, for the symmetrically fed two-phase 
induction machine, the representative vector of the resultant 
stator flux has the length coequal to the amplitude of total 
flux generated by one phase (as or bs), 

sassR U ω/2=Ψ (its apex covers a circle), the rotation 

speed is constant and equal to pulsation of applied voltage 
ωs, and the direction of rotation is conditioned by the initial 
phase angle of the two applied voltages. In anticipation, has 

to be revealed that the representative vector is given by the 
summation of two opposite rotating vectors, a forward 
component and a backward one. 

III. THE REPRESENTATIVE PHASE VECTORS FOR 

UNSYMMETRICAL TWO-PHASE CONDITION 

The study take into discussion the unsymmetrical supply 
when bsas UU ≠ . An analytical approach is possible if the 

following expressions are used: 
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where: ελελ sin;cos 21 asbasb UUUU == . A different form to express the above equtions is 
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Using the above reasoning, one can define the space-time stator phase vector: 

2/; πδψψ δ =Ψ+Ψ=Ψ↔+=Ψ bs
j

assRbsyasxsR eji                                              (12) 
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Taking into consideration the forward and backward components above designated, one obtain: 
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Thus, is analytically proved that, in contrast to symmetrical 
condition that keep nothing but one component (forward or 
backward), the unsymmetrical condition has two flux 
components: a forward one, more significant in amplitude 

and a weaker backward component (this fact is generally 
valid for the studied quantities). The two components can be 
expressed as follows:  
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The next step is a rotation of the space-time phase vector 
inside the complex space with the angle 

( ) 2/di ααα +−=− . This operation is equivalent with a 

multiplication with ( ) 2/idj
e

αα +− . It results:  
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The trigonometric form is: 
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Dissociation of the real (x subscript) and imaginary (y subscript) parts lead to the equation system: 
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which, by eliminating the parameter t, gives; 
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In conclusion, the apex coordinates of the representative 

flux vector which are related to the new axes (XOY) and 
rotated by the angle ( ) 2/di ααα += towards the initial 

system (xOy) are accomplishing the characteristic equations 
of an ellipse (E) with A+B and A-B as semi-axes. 

The apex of the forward vectors covers a circle (Cd), 
while the backward components cover the circle (Ci). Bothe 
vectors have coequal angular speeds, sω , but to opposite 

directions. Fig. 2 presents the representative phase vectors 
of the total fluxes corresponding to three consecutive 
moments: : ,0=tω - the apex in A; ,4/πω =t - the apex in 
B; ,2/πω =t - the apex in C. As an example, using the 

values  6;6/;75.0 =Ψ== asπελ , then 

( ) ( )[ ] ( ) ( )[ ] ( )[ ]πωωπωπωπωπω −−+−−−−− +++++=Ψ tjtjtjtjtjtj
sR

ssssss eeeeee 6.18.22.4 2/2/2/2/                     (19) 

Separation of the forward and backward terms gives 
( ) ( ) 013777 30;1.22.7)4.16.1()76.1(

00

=+=+−+−=Ψ −−−− αωωωω tjtjtjtj
sR

ssss eeejej                         (20) 

 
Fig. 2  Representative phase vector for the unsymmetrical condition of the induction machine 
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The amplitude of total flux during a period cover the 
range (9.3 - 5.1)Wb. It is obvious that the instantaneous 
angular speed of the resultant flux is a variable quantity 
despite the assumption which asserts that the mean value 
remains constant and coequal with the synchronism one. 
Practically, during a period, the torque has twice both 
maximum and minimum values. This may cause intolerable 
vibrations and noise or possible mechanical faults. These 
variable torques determine non-uniform rotor speed, 
increased frictions, higher temperature irradiated non-
uniformly in the machine components, trepidations, 

premature ageing of the bearings, a global decrease of the 
output power and lifetime. 

IV.   ANALYSIS OF UNSYMMETRICAL CONDITION 
USING REPRESENTATIVE SPACE-TIME PHASE 

VECTORS 

A proper analysis can be achieved as follows. One starts 
with the equations of two-phase unsymmetrical induction 
machine written in the simplified complex manner, under 
matrix form, [15-20]: 
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Assuming the superposing effect principle for voltages 
and total fluxes, one can formulate the connective 
expression between complex quantities and corresponsive 
space-time phase vectors as follows 

qrdrrRbsassRbsassR jjUjUU ψψψψψψ +=+=+= ;; (22) 

In matrix equation (21) one multiplies the 2nd and 3rd rows 
with j, which has as consequence the modification of the 
terms including ωR : 
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The system equation (23) leads to other two equations: 
one for the representative space-time phase vector of the 
stator total flux and the other for the similar rotor phase 
vector. The analysis implies two steps. 
a) One consider a first machine, denoted with F.M., which 
include nothing but rotational representative phase vectors 
that that circulate forward (denoted with d subscript). The 
following notations are used: 

;; ssrsrsrsrs jNjN ωνων +=+=

sRshrhsrssrstt sωωωννννων =−−= ; . 

The first equation comes from summation of the first two 
rows and the second equation is the sum of the third and 
forth rows. The matrix form of the matrix is: 
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The right member determinant is a complex quantity: 

( ) ( )[ ]

( )[ ]222222

2

2

;

ttsrhrhssrss

rssrstts

ss

sjs

ννννωνω

ννωνω

++++=

=∆++−=∆
         (25) 

The representative space-time phase vectors of the fluxes 
are: 
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The electromagnetic torque developed by the forward 
machine is: 
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Observation: A reversal of the supply phase order (or any 
polarity phase inversion) with preservation of rotor rotation 
direction determine the reversal of the rotation direction of 
the representative phase vector of applied voltages and 
fluxes. This fact implies the reversal of the sign of the 
pulsation, ss ωω −→ . In (24) act the new parameters 

ssrsrsrsrs jNjN ωνων −=−=
∗∗ ; . The machine operates as 

brake and the new equations give easily the torque 
expression. 
b) From the viewpoint of the backward components, the 
machine acts as a brake (B.M.), according to equations: 
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where ( ) sRs s ωωω −−=−− 2 . 

The left member determinant is: 
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where: 2222 ;; ttsrhrhssrs CBA ννννων +==+=  

The representative space-time phase vectors of the fluxes 
are: 

 ( )[ ] ∗∗
∆

∆
=∆−−

∆
= 12

1
12

1

;2 hr
sRi

rRissr
sRi

sRi

U
sj

U
νψωνψ   (30) 

 



6 

The electromagnetic torque developed by the "backward machine" is:  
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The resultant torque obtained by means of superposing effect law, is: 
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The components of the representative phase vector of the voltages can be similarly deduced: 
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For particular case one obtain: 
- Machine with symmetrical supply system - ;0;0;2;0;1 ====== idid EE εεελ  
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                                                               (35) 

- Machine with single-phase supply system (broken b-y phase) - ;0;1;1;0;0 ====== idid EE εεελ  
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Obviously, for s=1 (start-up) one obtain Merez=0. At same 
the time, it is noticeable that the dependence Merez=f(s) is a 
symmetric curve around start-up point, Merez(1-x)=-

Merez(1+x). 

- Machine with both windings connected to the same voltage 
(null difference of phase between the two applied voltages), 

4/;2;2/;1 πεεπελ ====== idid EE . As a matter of 

fact, this is a complete single phase or 1/1 machine. The 
torque expression is: 

( )
( ) ( ) 
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There is a duplication of the torque for a certain slip. This 
is a solid argument for the solution that uses for the single 
phase motors only 2/3 slots and consequently the developed 
torque decrease to 8:9 value. As expected, for s=1 then 
Merez=0.   

No doubt, there is a confirmation of these results which 
are similar to ones that are obtained by means of other 
methods such as "symmetrical components method" [21-
22]. 

Graphic inference of the amplitude of the two voltage 
components is presented in Fig. 3. The graphic construction 
is made for a specific case, and more precisely at t=0. After 
the calculus of the length of the two voltage components 
(forward and backward) and their difference of phase 
corresponding to t=0, one determine the track of the apices 
representing a circle. Each component length represents the 
circle radius, which runs to opposite directions with coequal 
speeds, ωs.  

 
Fig. 3  Graphic inference of the representative space-time phase vector component 

a) Two-phase unsymmetrical voltage system, b) Forward rotational phase vector,  c) Backward rotational phase vector 
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The following methodology is used (Fig. 3). The voltage 
Uas is considered as phase reference, Fig. 3a. One plot the 
phase vector OA , its value being half voltage amplitude, uas, 

that is 
2
asU

OA = . Similarly, one plot the phase vector OB 

with 
2
bsU

OB = but with a difference of phase of ε-π/2 

(which is negative for this case). Further, the phase vector 
OB is rotated towards positive direction with π/2 resulting 
OB'. The vectors OA cu OB' are geometrically summated 
resulting OC= UsRd, that is the representative forward 

rotational phase vector. Then the vector OB" is obtained as 
the symmetric segment against vertical axis. The sum of  
OB" with OA gives OD= UsRi, that is the representative 

backward rotational phase vector. The representative 
forward rotational phase vector covers the circle (Cd) 
towards positive trigonometric direction (Fig. 3b) and the 
representative backward rotational phase vector covers the 
circle (Ci) towards negative trigonometric direction (Fig. 
3c). Obviously, the apex of the representative rotational 
phase vector covers an ellipse. This graphical construction is 
justified by the following reasoning. The cosine theorem 
applied in OAC triangle gives 

( ) ελλ cos212/ 2 ++= asUOC  and for OAD triangle 

( ) ελλ cos212/ 2 −+= asUOD . These are the lengths of 

the forward and backward phase vectors. 

V.   CONCLUSION 

The representative space-time rotational phase vectors of 
total fluxes represents a useful tool for understanding the 
phenomena that take place inside the induction machine 
(with stator-inductor, rotor-armature). They give a physical 
signification close to image of the traveling waves. The 
equations have a reduced number of variables. Practically, 
there are only voltages (that characterize the electric field) 
and total fluxes (characterizing the magnetic field). The 
presence of current is no longer necessary. 

The equations containing nothing but fluxes lead to simple 
analytical expressions for total fluxes of the stator and rotor. 
It is easy to handle these equations both for the analysis of 
symmetrical and unsymmetrical conditions. 

For symmetrical condition, the apex of the representative 
stator and rotor phase vectors (for flux) covers a circle and 
the rotation speeds are constant. For unsymmetrical 
condition, the apices cover ellipses and the instantaneous 
speeds during a revolution vary between two limits. The 
analysis can be accomplished by using two representative 
phase vectors: a forward and a backward one, respectively. 
They have coequal but opposite directions.   

For unsymmetrical condition is possible to have a 

significant saturation of the magnetic circuit corresponding 
to major axis position. In this approach, this fact can be 
easier pointed out in comparison with classic formulations 
where the presence of currents is mandatory. 
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