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Abstract— On the basis of the mathematical model, called in
a previous paper in total fluxes, and which is proper for the
analysis of transient operation of the two-phase induction
machine, one obtains the symmetrical steady-state equations,
which are valid for three-phase machines, as well. The obtained
mathematical expressions are much more simple and easier to
be used that the consecrated ones which are generally applied
in scientific literature. Moreover, considerations are to be
made upon the space-time rotational vectors, emphasizing their
importance in understanding the physical phenomena that
characterize induction machines. The use of these space vectors
is further tested out for the study of unsymmetrical supply
which gives a much faster method in obtaining the
electromagnetic torque expression. Finally, the results are
compared with the ones that come out from the traditional
methods.

Index Terms—induction machine, unsymmetrical condition,
representative rotational phase vector

I. INTRODUCTION

In support of our approach, defining of the space-time
rotational vectors, which were presented under similar
formulations in scientific literature [1-8], is firstly necessary.
The superposing effect as regards the quantities of the
electric field determined by the two-phase supply system
and the corresponding magnetic field is also considered as a
prior probability. The supply voltages are applied along the
turns placed in the slots (collinear to Oz axis). If the winding
is placed in the slots according to a sinusoidal law, one
decide that the applied voltage phase vector, u to be
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represented as a segment in the xOy space, orientated
towards positive axis of the winding. The length of this
segment is maximum when the applied voltage is maximum,
too. Ideally, in default of magnetic leakages and drop
voltages corresponding to winding resistance, the magnetic
fields (more precisely, the total fluxes w which are
preponderantly effective for the real cylindrical machines)
close in a radial pattern inside the xOy space. It has a
harmonic distribution on the periphery (on the circle that
matches the middle of the air-gap) which means that the flux
density has maximum values in the centrum of the supplied
winding only when the applied voltage reaches the 0 value
(according to induced voltage law: wu=dy/dt). For our
demonstration, the stator phase vectors of the voltages and
total fluxes will be represented in the xOy space for different
but consecutive moments according to Leblanc theorem
(any magnetic flux of y,, amplitude, which is created by a
winding with cosine distribution and single-phase feeding, is
equivalent with two rotating and equal fluxes with the
amplitude of (1/2)y,, but which rotates in opposite directions
with coequal speed — forward and backward traveling waves
respectively), [9-14].

II. THE REPRESENTATIVE PHASE VECTORS OF THE
IDEAL INDUCTION MACHINE

The case of ideal machine with no leakage fluxes zero
value winding resistances is taken into discussion. The
following symbolic notations are used:
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If one consider a cross section of a symmetrical two-phase
machine (and more precisely a path along mid-stator
cylinder) and the winding axes have the orientation as-Ox
and bs-Oy respectively, then the phase vectors of the
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voltages and total fluxes, for different moments, have the
positions indicated in Fig. 1 (where a two-phase
symmetrical condition is assumed, U, =U),).
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Fig. 1 Representative rotational phase vectors of two-phase induction machine

Fig. 1 presents the voltage and total flux phase vectors
corresponding to forward and backward order for three
different moments: «t =0- Fig. lal)-a3), wt=rx/4- Fig.
1b1)-b3) and @t =x/2- Fig. 1cl)-c3). In contrast with
"classical" representation manner, where the cross and dot
signs placed inside a turn show the orientation of the
flowing current, in our case the symbols define the polarity
of applied voltage across turns (to avoid any confusion has
to be mentioned that the purely inductive circuits have a
time alteration of phase of 7/2 between current and applied
voltage).

During the considered interval (a quarter period) the
applied voltage on as phase starts from maximum value and
decreases to zero value (see Fig.1-al,bl,cl) while the
voltage corresponding to bs phase starts from zero value and
increases to maximum value (Fig.1-a2,b2,c2). The resultant
values of voltage and total flux phase vectors come from a
geometrical summation of the forward components
corresponding to the two phases of the machine. These
components are coequal and collinear. On the contrary, the
backward components are coequal but in opposite directions

This vector can be expressed in a different way (polar
coordinates) as W =W, £6. The absolute value of this

vector is W =Wl +VWi, = ‘Pas\/E -constant, and the

argument #=a@¢—7x/2, which is time dependent. The

for every moment and consequently the sum is always zero.
For example, the resultant phase vector of total stator flux
has a constant absolute value and the rotation angle is of
7 /2 rad. (during a quarter period, the apex of the resultant
phase vector covers a quarter of the circle inside the plane
x0Oy). This is a coincidence that allows a reciprocal
conversion of the temporal and spacial angles and the phase
vectors (obtained by means of analytical representation)
from the complex space (+1,+j) can be assimilated to phase
vectors in xOy space, which will be denoted representative
vectors.

To express in an analytical manner the representative
vector of total stator fluxes is necessary a geometrical
summation of the components corresponding to Ox axis (the

fversor) and Oy axis (the ; versor) of the two windings, as
and bs. Along Ox axis, the total flux is created by as
winding with a cosinusoidal time variation and an initial
phase of —z/2. The same assumption for bs phase but
acting on Oy axis with an initial phase of — 7.

IPSR = l//asx; + l//hsy} = \I’as \/5 COS[CUSI - %j; + \I’as \/5 COS[CUSI - % - %jjv (5)

angular speed comes from  phase  derivative
Q,=d68/dt=w,and is equal to applied voltage pulsation.
Notable is the fact that the projections of the representative
vector along Ox and Oy axes have coequal length with
instantaneous values of the total fluxes created by the as and
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bs windings. This is a strong motive in adopting the concept
of representative space-time vector of the stator flux. It must
be also mentioned that the representative vector of the stator
flux shows any moment the radial direction of the cross
section plane where the density of stator magnetic flux lines
(with radial air-gap flux density) is maximum.

A different way to define the representative space-time
vector of the stator flux is based on one-to-one

correspondence between xOy space (; ,; versors) and
complex space (+1,+j). The following statement is allowed:
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the j versor can be obtained by rotating in the same plane

the versor i with 7/2 which is equivalent to "multiplication
by j" in "simplified complex" approach. One can define:

ESR = l//asx;-’_ l//bs)'; A 2sR = Eas + ejsgbs;é‘ =7/2 (6)

The angle J = 7/ 2 has the signification of a spacial angle
between the machine windings. Taking into consideration
the forward and backward components presented above, one
obtain:
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which prove in an analytical way that there is a summation
of the forward components and a subtraction of backward
components which nullify them.

Observation: The direction of rotation of the
representative vector can be reversed if the polarity of the

E SR = gas + j(_gbs) =

— je
In this case, the forward components annihilate each other
and the backward components add up.
In conclusion, for the symmetrically fed two-phase
induction machine, the representative vector of the resultant
stator flux has the length coequal to the amplitude of total
flux  generated by one phase (as or bs),
Y =U M\E /@, (its apex covers a circle), the rotation
speed is constant and equal to pulsation of applied voltage

wy, and the direction of rotation is conditioned by the initial
phase angle of the two applied voltages. In anticipation, has
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supply voltage for one winding is reversed as well. For
example, if the reversed phase is b-y, then ¥, is reversed
and the representative vector becomes:
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to be revealed that the representative vector is given by the
summation of two opposite rotating vectors, a forward
component and a backward one.

III. THE REPRESENTATIVE PHASE VECTORS FOR
UNSYMMETRICAL TWO-PHASE CONDITION

The study take into discussion the unsymmetrical supply
when U, #U, . An analytical approach is possible if the

following expressions are used:
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Using the above reasoning, one can define the space- -time stator phase vector:
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Taking into consideration the forward and backward components above designated, one obtain:
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Thus, is analytically proved that, in contrast to symmetrical
condition that keep nothing but one component (forward or
backward), the unsymmetrical condition has two flux
components: a forward one, more significant in amplitude
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and a weaker backward component (this fact is generally
valid for the studied quantities). The two components can be
expressed as follows:
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Dissociation of the real (x subscript) and imaginary (y subscript) parts lead to the equation system:
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In conclusion, the apex coordinates of the representative

flux vector which are related to the new axes (XOY) and
rotated by the angle 0{=(ai+ad)/2towards the initial

system (xQy) are accomplishing the characteristic equations
of an ellipse (E) with A+B and A-B as semi-axes.

The apex of the forward vectors covers a circle (Cy),
while the backward components cover the circle (C;). Bothe

(18) " Jectors have coequal angular speeds, @,, but to opposite

directions. Fig. 2 presents the representative phase vectors
of the total fluxes corresponding to three consecutive
moments: : @t =0, - the apex in A; «t =7x/4,- the apex in
B; at=m/2,- the apex in C. As an example, using the
values 4=0.75 &e=xn/6; ¥, =06,then

¥ = 4.2[6_/(@;—71'/2) + e—j(a)_vt—zz'/z)]_i_ 2.8[ej(w-‘t_”/2) " e_j(w"t+”/2)]+1.6[@'/.0“ " e—j(a)st—lt)] (19)
Separation of the forward and backward terms gives
W op = (16— e’ +(=1.6+ jl.A)e /" = 72¢105°) 4 g 1 il0137), g 2 30 (20)

(E)

N WiratFori
\\ - N

A
\Pst

Fig. 2 Representative phase vector for the unsymmetrical condition of the induction machine
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The amplitude of total flux during a period cover the
range (9.3 - 5.1)Wb. It is obvious that the instantaneous
angular speed of the resultant flux is a variable quantity
despite the assumption which asserts that the mean value
remains constant and coequal with the synchronism one.
Practically, during a period, the torque has twice both
maximum and minimum values. This may cause intolerable
vibrations and noise or possible mechanical faults. These
variable torques determine non-uniform rotor speed,
increased frictions, higher temperature irradiated non-

uniformly in the machine components, trepidations,
Qas Vrs + Ja)Y 0
Uy | 0 V. + jo,
O 0 - Vhr
0 - Vhr O

Assuming the superposing effect principle for voltages
and total fluxes, one can formulate the connective
expression between complex quantities and corresponsive
space-time phase vectors as follows

Uy | Vst 0
JUp | 0 Vs + J O
0| o —V,,
0 Vi 0

The system equation (23) leads to other two equations:

one for the representative space-time phase vector of the
stator total flux and the other for the similar rotor phase
vector. The analysis implies two steps.
a) One consider a first machine, denoted with F.M., which
include nothing but rotational representative phase vectors
that that circulate forward (denoted with d subscript). The
following notations are used:

Mrs =V +jws;ﬁsr =V +j(0s;
Vs =V, V

srors

VsV Oy — O = 5D .

The first equation comes from summation of the first two
rows and the second equation is the sum of the third and
forth rows. The matrix form of the matrix is:

U N —Ve
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0 ~Vir ﬁsr — JWg Ker

The right member determinant is a complex quantity:

: L A2 —
é= ws[(VI‘I‘ _Sa)s)+ ](Vsr +Svrs)]’A -
2,2 2).2 2,2 (25)
=y [(Vrs + (20X )S +2s VisVir + Vr + Vit
The representative space-time phase vectors of the fluxes
are:

UY . * QY *
Vo = —A‘f" (v, +jso)ASy = A‘§" Vi A" (26)
The electromagnetic torque developed by the forward
machine is:
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premature ageing of the bearings, a global decrease of the
output power and lifetime.

IV. ANALYSIS OF UNSYMMETRICAL CONDITION
USING REPRESENTATIVE SPACE-TIME PHASE
VECTORS

A proper analysis can be achieved as follows. One starts
with the equations of two-phase unsymmetrical induction
machine written in the simplified complex manner, under
matrix form, [15-20]:
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In matrix equation (21) one multiplies the 2" and 3" rows
with j, which has as consequence the modification of the
terms including oy :
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Observation: A reversal of the supply phase order (or any
polarity phase inversion) with preservation of rotor rotation
direction determine the reversal of the rotation direction of
the representative phase vector of applied voltages and
fluxes. This fact implies the reversal of the sign of the
pulsation, @, - -®,. In (24) act the new parameters

N

—rs
brake and the new equations give easily the torque
expression.

b) From the viewpoint of the backward components, the
machine acts as a brake (B.M.), according to equations:
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The left member determinant is:
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The representative space-time phase vectors of the fluxes
are:
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The electromagnetic torque developed by the "backward machine" is:
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2 2
: 2—=5)U i
Merez :Med +Mei — PV ZSUst _ (2 S)UaRt (32)
O,Lyy | As® +2Bs+C  A(2—s)” +2B(2-s)+C
The components of the representative phase vector of the voltages can be similarly deduced:
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For particular case one obtain:
- Machine with symmetrical supply system - A=1,€=0,E, =2;E; =0,¢, =¢, =0;
2 .
Merez = Med = pVhrUaa 2 = (35)
' oL, As“+2Bs+C
- Machine with single-phase supply system (broken b-y phase) - A=0,6=0,E, =LLE, =l;¢, =€, =0,
Vi Us 2-
Merez_Med+Mei:p b —as 2 - - 2( S) (36)
20,Ly5 | As* +2Bs+C  A(2—s)* +2B(2-s)+C

Obviously, for s=1 (start-up) one obtain M,,.=0. At same
the time, it is noticeable that the dependence M,,..=f(s) is a
symmetric curve around start-up point, M, (I-x)=-
Merez(] +-x)'

- Machine with both windings connected to the same voltage
(null difference of phase between the two applied voltages),

A=le=n/2E; =E; =2;¢;, =¢; = /4. As a matter of

fact, this is a complete single phase or 1/1 machine. The
torque expression is:

v, U?
M :Med+Mei:p hr ax|:

ereg
a)s LO’O’

There is a duplication of the torque for a certain slip. This
is a solid argument for the solution that uses for the single
phase motors only 2/3 slots and consequently the developed
torque decrease to 8:9 value. As expected, for s=/ then
Merez=0'

No doubt, there is a confirmation of these results which
are similar to ones that are obtained by means of other
methods such as "symmetrical components method" [21-
22].

A’ +2Bs+C  A(2—s) +2B(2—-s)+C

(37)

(2-5) }

Graphic inference of the amplitude of the two voltage
components is presented in Fig. 3. The graphic construction
is made for a specific case, and more precisely at t=0. After
the calculus of the length of the two voltage components
(forward and backward) and their difference of phase
corresponding to =0, one determine the track of the apices
representing a circle. Each component length represents the
circle radius, which runs to opposite directions with coequal
speeds, @;.

(Ca)

Usra

C +

Og

b)

Fig. 3 Graphic inference of the representative space-time phase vector component
a) Two-phase unsymmetrical voltage system, b) Forward rotational phase vector, c) Backward rotational phase vector
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The following methodology is used (Fig. 3). The voltage
U, is considered as phase reference, Fig. 3a. One plot the
phase vector OA its value being half voltage amplitude, u,,

that is |OA| . Similarly, one plot the phase vector OB

with |OB|: Uss but with a difference of phase of e-7/2

N

(which is negative for this case). Further, the phase vector
OB is rotated towards positive direction with 7z/2 resulting
OB'. The vectors OA cu OB’ are geometrically summated
resulting OC= U, that is the representative forward
rotational phase vector. Then the vector OB" is obtained as
the symmetric segment against vertical axis. The sum of
OB" with OA gives OD= U, that is the representative
backward rotational phase vector. The representative
forward rotational phase vector covers the circle (Cy)
towards positive trigonometric direction (Fig. 3b) and the
representative backward rotational phase vector covers the
circle (C;) towards negative trigonometric direction (Fig.
3c). Obviously, the apex of the representative rotational
phase vector covers an ellipse. This graphical construction is
justified by the following reasoning. The cosine theorem
applied OAC triangle gives

|OC| (U /x/_'\/1+/12 +2Acose and for OAD triangle
|OD| = (U as! 2 N 1+ A% =24 cose . These are the lengths of

the forward and backward phase vectors.

V. CONCLUSION

The representative space-time rotational phase vectors of
total fluxes represents a useful tool for understanding the
phenomena that take place inside the induction machine
(with stator-inductor, rotor-armature). They give a physical
signification close to image of the traveling waves. The
equations have a reduced number of variables. Practically,
there are only voltages (that characterize the electric field)
and total fluxes (characterizing the magnetic field). The
presence of current is no longer necessary.

The equations containing nothing but fluxes lead to simple
analytical expressions for total fluxes of the stator and rotor.
It is easy to handle these equations both for the analysis of
symmetrical and unsymmetrical conditions.

For symmetrical condition, the apex of the representative
stator and rotor phase vectors (for flux) covers a circle and
the rotation speeds are constant. For unsymmetrical
condition, the apices cover ellipses and the instantaneous
speeds during a revolution vary between two limits. The
analysis can be accomplished by using two representative
phase vectors: a forward and a backward one, respectively.
They have coequal but opposite directions.

For unsymmetrical condition is possible to have a
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significant saturation of the magnetic circuit corresponding
to major axis position. In this approach, this fact can be
easier pointed out in comparison with classic formulations
where the presence of currents is mandatory.
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